610 research outputs found

    Magnetic Field Generation from Self-Consistent Collective Neutrino-Plasma Interactions

    Get PDF
    A new Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived from a covariant relativistic variational principle in which finite-temperature effects are retained. This new formalism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a result of collective neutrino-plasma interactions.Comment: 23 page

    Suppression of feedback oscillations in free electron lasers

    Get PDF

    Multimode interactions in cyclotron autoresonance maser amplifiers

    Get PDF

    A wide bandwidth free-electron laser with mode locking using current modulation

    Get PDF
    A new scheme for mode locking a free-electron laser (FEL) amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept (Thompson and McNeil 2008 Phys. Rev. Lett. 100 203901), based on the energy modulation of electrons, are improved, including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked FEL and a self-amplified spontaneous emission FEL. Illustrative examples using a hypothetical mode-locked FEL amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated

    Transparency of Magnetized Plasma at Cyclotron Frequency

    Get PDF
    Electromagnetic radiation is strongly absorbed by the magnetized plasma if its frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a second radiation beam, or even a magnetostatic field of an undulator, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically-induced transparency (EIT) of the three-level atomic systems, except that it occurs in a completely {\it classical} plasma. Also, because of the complexity of the classical plasma, index of refraction at cyclotron frequency differs from unity. Potential applications of the EIT in plasma include selective plasma heating, electromagnetic control of the index of refraction, and electron/ion acceleration

    Phase-locking transition in a chirped superconducting Josephson resonator

    Full text link
    By coupling a harmonic oscillator to a quantum system it is possible to perform a dispersive measurement that is quantum non-demolition (QND), with minimal backaction. A non-linear oscillator has the advantage of measurement gain, but what is the backaction? Experiments on superconducting quantum bits (qubits) coupled to a non-linear Josephson oscillator have thus far utilized the switching of the oscillator near a dynamical bifurcation for sensitivity, and have demonstrated partial QND measurement. The detailed backaction associated with the switching process is complex, and may ultimately limit the degree to which such a measurement can be QND. Here we demonstrate a new dynamical effect in Josephson oscillators by which the bifurcation can be accessed without switching. When energized with a frequency chirped drive with an amplitude close to a sharp, phase-locking threshold, the oscillator evolves smoothly in one of two diverging trajectories - a pointer for the state of a qubit. The observed critical behavior agrees well with theory and suggests a new modality for quantum state measurement.Comment: 5 pages, 4 figure

    Non-linear theory and experiment of collective free electron lasers

    Get PDF

    Parametric studies of free electron laser nonlinear ponderomotive trapping buckets

    Get PDF
    • …
    corecore